-
|
.. , .. , .. , .. , ..
-
1 ,
2 - , ,
3 , ,
______________________________
B.V. Drivotinov, E.N. Apanel, N.A. Novoselova A.S. Mastykin, A.S. Fedulov
ADAPTIVE NEURO-FUZZY MODEL FOR TRANSIENT ISCHEMIC ATTACKS SUBTYPES DIFERENTIAL DIAGNOSTICS
() , , . , – , , « » [1- 5, 8, 15].
[2, 4, 5, 10-12].
(fuzzy sets) (fuzzy logic) . (Lotfi Zadeh) 1965 . : « – , » [17].
, , . (membership function) , 0 1.0.
, , . , . , () , .
«, » . , . «, » , . . , , . .
, , « » [7]. . , (adaptive fuzzy systems), , .
() [2, 5, 10-12] () [1, 2, 5, 8].
– () - .
, - , [2, 4, 5, 10-12]. , .
. , [10-12]. – , .
, , . 101 , , (.1).
. Group, : 1 ( 1), 2 ( 2), 3 ( 3) ( 4) [1, 2, 4, 5, 8].
1
.
|
|
|||
AGE | 6 | 3 | ||
PROFESSN | 6 | 2 | ||
INSOMNIA | 3 | 3 | ||
HERED_CV | 4 | 3 | ||
HEREDITA | 4 | 3 | ||
ECG | 3 | 2 | ||
HEARTACH | 4 | 3 | ||
LABEFFEC | 4 | 3 | ||
MEMORYLO | 4 | 3 | ||
OPDISODS | 4 | 2 |
. , , .
, :
- PROFESSN INSOMNIA OPDISODS
, Group 1 0.88.
- PROFESSN INSOMNIA OPDISODS
, Group 2 0.45.
- INSOMNIA , Group 3 0.6.
- HEARTACH , Group 3 0.44.
- Group 4 0.12.
75%.
. (R1 – R5) (1-3 , 4); : –«», –«», – «».
- 3 ( 3) INSOMNIA HEARTACH R3 R4.
:
– ( : , , .., );
– – , , ;
– , – (1-3) (4).
, 26, ,: PROFESSN, INSOMNIA, HEARTACH, OPDISODS, , (1, 2, 3 ). 2 ( , 101 ) () .
2.
( ) |
|
AGE | PROFESSN | INSOMNIA | HERED_CV | HEREDITA | ECG | HEARTACH | LABEFFEC | MEMORYLO | OPDISODS | ||||
1 | 2 | 3 | |||||||||||||
() |
|||||||||||||||
3
(-) |
- 56 | 5 | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 2 | 1 | 0 | 0 | 0,83 | 0,17 |
- 50 | 3 | 1 | 3 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0,83 | 0,17 | |
M- 73 | 6 | 1 | 3 | 2 | 2 | 2 | 2 | 3 | 4 | 2 | 0 | 0 | 0,83 | 0,17 | |
- 60 | 6 | 1 | 3 | 1 | 1 | 2 | 2 | 3 | 2 | 3 | 0 | 0 | 0,83 | 0,17 | |
- 60 | 6 | 6 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 1 | 0 | 0 | 0,71 | 0,29 | |
2 (-) | - 55 | 4 | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 0 | 0,79 | 0 | 0,21 |
- 70 | 6 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 0 | 0,79 | 0 | 0,21 | |
- 55 | 4 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0,65 | 0 | 0,35 | |
- 48 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0,65 | 0 | 0,35 | |
- 50 | 3 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 0 | 0,65 | 0 | 0,35 | |
1 (-
) |
- 57 | 5 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 3 | 0,88 | 0 | 0 | 0,12 |
- 49 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 3 | 0,88 | 0 | 0 | 0,12 | |
M- 49 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 0,86 | 0 | 0 | 0,14 | |
T-a 40 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 0.79 | 0 | 0 | 0,21 | |
- 46 | 3 | 3 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 0.79 | 0 | 0 | 0,21 | |
|
- 50 | 4 | 5 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 0 | 0 | 1 |
- 59 | 5 | 5 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 0 | 0 | 0 | 1 | |
- 61 | 6 | 5 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | |
- 37 | 3 | 5 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | |
- 40 | 2 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | |
- 59 | 5 | 5 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | |
- 39 | 2 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 0 | 0 | 1 | |
- 65 | 6 | 5 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 1 |
( , 40 ). () 3, «-» – 3 ( – 20 , 50%), , 2 (7 , 17,5%), 1 ( , 7,5%).
3
( ).
/ | .. | |||||
1 | 2 | 3 | ||||
1 | - 58 | 4 | 0 | 0 | 0 | 1 |
2 | - 47 | 4 | 0 | 0 | 0 | 1 |
3 | - 52 | 3 | 0 | 0,178 | 0,582 | 0,238 |
4 | - 55 | 3 | 0 | 0 | 0,709 | 0,290 |
5 | - 42 | 3 | 0 | 0,178 | 0,582 | 0,238 |
6 | - 56 | 1 | 1 | 0 | 0 | 0 |
7 | - 66 | 4 | 0 | 0,428 | 0 | 0,571 |
… | … | … | … | … | … | … |
16 | - 19 | 1 | 0,880 | 0 | 0 | 0,120 |
17 | - 80 | 2 | 0 | 0,789 | 0 | 0,210 |
18 | - 53 | 3 | 0 | 0,352 | 0,459 | 0,187 |
19 | - 51 | 4 | 0 | 0,428 | 0 | 0,571 |
20 | - 60 | 2 | 0 | 0,789 | 0 | 0,210 |
21 | - 49 | 3 | 0 | 0,352 | 0,459 | 0,187 |
22 | - 74 | 3 | 0 | 0 | 0,709 | 0,290 |
23 | - 53 | 4 | 0 | 0 | 0 | 1 |
24 | - 76 | 2 | 0 | 0,521 | 0,339 | 0,139 |
25 | - 58 | 3 | 0 | 0 | 0,833 | 0,166 |
26 | - 66 | 4 | 0 | 0 | 0 | 1 |
27 | - 60 | 3 | 0 | 0 | 0,833 | 0,166 |
28 | - 64 | 2 | 0 | 0,652 | 0 | 0,347 |
… | … | … | … | … | … | … |
35 | - 67 | 2 | 0 | 0,465 | 0,379 | 0,155 |
36 | - 55 | 3 | 0 | 0 | 0,833 | 0,166 |
37 | - 53 | 2 | 0 | 0,652 | 0 | 0,347 |
38 | - 63 | 3 | 0 | 0 | 0,833 | 0,166 |
39 | - 35 | 4 | 0 | 0 | 0 | 1 |
40 | - 37 | 1 | 0,594 | 0 | 0 | 0,405 |
(%)
(%) |
3 (7.5) | 7 (17,5) | 20 (50,0) | 10 (25,0) |
, – , , . ; - . – , . -, «» (, ). , ( 2 3) . . (25,0%) , , , .
. . «-» . [1-5, 8, 14, 15], « ».
, « » , (, , ) , «» , , .
, . [16]. , ό – [9].
. , . (), () . , «, -, , , , … -, … , . , ». [6]. . («») « », t- «, » , . , , , « », .
, , , . , , , . , (.), (. « »), [10], , «-», , OLAP . «» .
, - . - , - , , , , , , . - (-) (fuzzy sets) [2, 5, 8].
– ( ) . . " " , ( , ), 60- , " , - " [13]. , .
. . , . .
– . . , , , «» «, » - .
: – – .
- .., .., .. - - // .-2006.- 3.- . 116-119
- .., .., .., .. // . – 2006.- 1.- . 51-54.
- .., .., .. // .-2007.- 1.- . 114-118.
- .., .., .. // .: . , 2007.- . 295-301.
- .., .., .., .. // .-2007.- 2.- . 102-105.
- .., .. ?//. . .- 2003.- 3.- . 119-121.
- .., .., .. . .- . 21.-.- 1998.- . 121-125.
- .., .., .. // . . . 2004, 4.- . 18-21.
- .. . ., 1972.
- .. // . - 2002.- 2.- . 526-533.
- .. // . - 2004.- 2.- . 150-154.
- .., .., .. // . - 2006.- 2.- . 211-214.
- . . .. - .: , 1971.
- Baldassarre D., Grossi E., Buscema M., Intraligi M. et al. Recognition of patients with cardiovascular disease by artificial neural networks//Ann. med.- 2004.- Vol. 36.- 8.- P. 630-640
- Shalkevich V., Mastykin A. Prognostic symptomatology of transient ischemic attacks. European J. of Neurol., 1998 vol. 5 (suppl.3), S96-S97.
- Streifler J.Y., Eliasziw M., Benavente O.R., Alamowitch S., Fox A.J, Hachinski V.et al. Development and Progression of Leukoaraiosis in Patients With Brain Ischemia and Carotid Artery Disease // Stroke.- 2003.-Vol.34.- P.1913-1916
- Zadeh, L. Biological application of the theory of fuzzy sets and systems / L. Zadeh // Proceedings of the International Symposium on Biocybernetics of the Central Nervous System. Boston: Little, Brown & Co., 1969. P. 199-212.
25.09.2023