616.8-005-072:517.938                               . 2010. 5.  . 81-90.

 

.. 1, .. 1, .. 2,

.. 3,.. 2

 

1

2  

3- , ,

 

. . (ASA/AHA), 2009 , , , (). . , , , 1992 2006, 2 623 000 TIA 0.37 1.1 1000 . Oxford Vascular Study 2002 2004 0.66 1000 . . 1000 0.67 , – 0.61.

       , Cardiovascular Health Study, 2.7% 65 69 4.1% 75-79 . 65 69 1.6% 4.1% 75-79 . 0.4% 45 64 [30].

     .

          . , .   . , , , , - . , , , [3]. « » « », . - ( - , ..) ,   . , . .

     - - in statu nascendi  « » «» . «» , ( , ..) [7, 8, 13, 14]. , , , - .

      , , . , . [1, 2].

    . , é -. - «- »,   - , , , « » , . , , - . - . «ó », . « ó », , , .

     – , , , , , , , , , , , , . 

         , . [7-10, 15, 16], , . , .

     , « ó » - . , . , : - , , , . : « », ?

          , 1987 , :

1.      (1).

2.      (2).

3.      (3).

4.      ().

     « » ( ). , - «», () [13, 14, 26, 27]. , - [4-6, 8-11].    

 

     66 (30 , 36 , 54.9 ). 22 , 22 – (, , , ), 22  ( ) . 35 , , . 101 .

    , (, , , ), -, . [13, 14, 26, 27], , , « » . . 1 - .

     - , , , . , , ,  « » « » , « » . .

 

 

 

 

 

 

 

1. (-, )

 

 

               ,

 

1

6

2

2

3

5

4

4

5

4

6

3

7

10

5

8

10

7

9

( , )

4

10

3

11

 

3

12

3

13

4

14

3

15

5

16

3

17

3

18

4

19

3

20

4

21

3

22

3

23

,

4

24

3

25

( )

4

26

5

27

( )

2

28

3

29

()

3

30

()

4

31

3

32

3

33

()

3

34

( )

3

35

()

3

36

( )

4

37

3

38

()

4

39

( )

4

40

4

41

2

     . - . - , - . , - , “ ” (“gray box”), . 1.

 

 
 

              . 1. -

 

-

. 2 , , [6]. . , . 41- , ( ) . 4- (1-3) ().

 

 
 
 

 

 

 

 


. 2. - -

 

, .. -,   - , . . (), , . (Recirculation Neural Network - RNN), . 41 - 12 . . (MultiLayer Perceptron MLP), () , , () ..

  . (RNN), (. 3). , , .

 

 

 
 
 

 

 

 

 

 

 

 

 


. 3. , RNN.

 

- . j- ,

 

,

F – ; Sjj- ; wiji- j- ; xii- .

:

,

     w’ji  j- i- ;  i- .

RNN. [33], – (backpropagation algorithm). RNN :

 

,

.

RNN . , . 12- , 4 5.

RNN :

,

,

.

 

L – . 41 - 101 .

, RNN . :

 

,

 - j- , – .

.

 

, 101 41 - (. 1). - . , , : 1 – 22 , 2 – 22 , 3 – 22 – 35 . 51 83 (. 2).

     , , . , 101 50 18 . 100%-    , , 76 77 .

 

2.

-

-

51

50

100%,

76%

83

18

100%,

77%

 

. . 5 RNN « » ( 1-3) (4). , .

 

 

. 4. RNN

 

RNN, . 5. (1-3) (4). RNN, RNN – ( ) «» . 2 (2, ) .

 

 

. 5. RNN

 

.

 

 

 

      - « ». - « » , .   . - « »  , . - . 3, 10   « » .

 

3.  

 

, , ()

 

1

 

2

 

3

 

“0”

25%

25%

25%

25%

, , 48

29.1%

29.9%

40.9%

0%

, , 54

21.5%

25.1%

53.4%

0%

, , 59

50%

30.5%

10.7%

8.8%

, , 51

27.5%

30%

34.2%

8.2%

, , 54

44.8%

13.9%

27.8%

13.5%

, , 60

36.8%

2.1%

59.5%

1.6%

M, , 73

17.9%

21.9%

51.8%

8.3%

, , 46

34.5%

5.6%

59.9%

0%

M, , 63

17.9%

21.9%

51.8%

8.3%

M, , 71

34.5%

5.6%

59.9%

0%

 

      , - . . .

     . , .

     , , «» - . - .

     , - , . , , , , [19-22]. . .. (2003) , « , » [3]. , . , () , in statu nascendi. , ,   , , , « »     [11, 19-22].

     , - (, , ) , , , - , , , . , , . , . , , , - , - .. . «» . , 100%- , « », , , , [3-6, 8-12, 18, 24, 28, 29, 31-34].

     - , , () . ASA/AHA [30], , ,   , (0.3, 1.1, 0.6, 0.61 .. 1000 ) ,   . , , [17, 23]. , 12 2007 92 « », - .

     , , , -, , ,   . - . - . , . , « , , , . «» , . » [25]. - - [12].

    

     , (RNN) , . 5. , - ( , , , ). , , , . , , , « ó » - . (, , ) - .

    ó «» - (, , , ).

, .

 

 

1.      .. . , , , 25 2005.

2.      .. : . . . . . 95.13.09. , 1991. - 27 .

3.      .. . . . . 2003. . 521-533.

4.      .. . .... . . 05.13.01. , 2002. 46 .

5.      .. . VII - -2005. . .: , 2005. . 43-91.

6.      .., .. ..// . , , . 2006.  5(41).  . 14-19.

7.      .., .., .., .. // .  2009. 1. . 143-148.

8.      .., .., .., .. // ARS MEDICA. 2009. 3. . 60-72.

9.      , .., .., .. // .  2009. 3. . 11-119.

10.  .., .., ..  . - « ».  20-21 2010.  .  . . 349-355.

11.          .., .., .., .., .., ..// i i. . . ,  2010, -. .

12.          . . . …. . . -. 05.13.18 . – 2002. 48 .

13.          .., .., .. // .  2004. 4. . 18-21.

14.          .., .., .. // i i (. . ).  2006.   1.  .  76-82.

15.          . . . . . . . . 05.13.18.  , 2008. 18 .

16.          . ., .., ..// . 2008. 3. . 105-112.

17.          . . // . 2006. 7. . 18 – 23.

18.          .., .., .. // . .. . (), 2004, . 12, . 23-28.

19.          . .    // . 14 1968 . . . 35–38.

20.          .., .., .. // . . . 1982. . 26. 7. . 665-668. 

21.          .. : . .- 2002. 164 .

22.          . . // . 2004. 8. C. 5–9.

23.          ..// . 2007. 9. . 41-43.

24.          .., .. . .-. . . 2000. 39 .

25.          .., .., ..// // . 1986. 9. . 65-85.

26.          .., .. // 1997,  2 . 47-49.

27.      .., .., .., .. //   . . 1998. 18 .

28.          . .  .: . 1980. 317 .

29.          Cpalka K, Rebrova O, Rutkowski L. // Lecture Notes in Computer Science 5769, Springer-Verlag Berlin Heidelberg 2009, 435-444.

30.          Easton J.D., Saver J.L., Albers G.W. et al. //. Stroke. 2009. Vol. 40. 6. P. 2276-2293.

31.          Kosko B. Fuzzy Thinking: The New Science of Fuzzy Logic. Hyperion. 1993.

32.          Laurentsyeva S., Golovko V., Evstigneev V. // Proceedings of the Tenth International Conference of Pattern Recognition And Information Processing (PRIP’2009). Minsk. Belarus, 19 – 21 May. Minsk, 2009. P. 327–331.

33.          Oja E.// Neural Networks archive. 1992. Vol. 5.  6.  P. 927-935.

34.          Zadeh L. A. // Communications of the ACM. 1994. Vol. 37. 3. P. 77-84.

 

 

616.8-005-072:517.938

 

.., .., .., .., .. . .. 2010.    .

      (, ) .   , . , , , . , – . . , , . .

     100%- , (). , 75%- , , -, . 

     . 3. . 6. – 34 .

 

A.S. MASTYKIN1, V.V. EVSTIGNEEV1, V.A. GOLOVKO2,

E.N. APANEL3, G. Yu. VOYTSEKHOVICH2

 

THE NEURONET APPROACH FOR RESOLVE THE PROBLEM OF DIAGNOSTICS END PREVENTION OF TRANSIENT ISCHEMIC ATTACKS

 

1Belarusian Medical Academy of Post-Graduate Education

2Brest State Technical University, Belarus

3Scientific and Clinical Center o f Neurology and Neurosurgery, Minsk, Belarus

 

Summary

     Nocuous influences (attacks, intrusions) on normally proceeding processes in various areas of practical activities induce to search for new more refined methods of protection against them. Normal work on the Internet and normal ability to live of a living organism in surrounding conditions is exposed to such attacks. Informative methodological approaches to a problem of protection against nocuous calls, both in a society, and in a separate living organism, can be similar and even identical. Here and there the main is to unmask and to determinate the pathogenic agent. In this context in the present work the decision of a problem of protection against nocuous attacks to normal blood supply of a brain by convergence with the neuronet approach to protection against virus network attacks on the Internet is concretized. Steady classification decisions are necessary, first of all, for this purpose on recognition of images. In our medical research it is correct diagnostics.

     On an available initial material on training sample 100 %-s' recognition on four classes of recognition of images as which are subtypes of transient ischemic attacks (TIA) act has been received. However on test samples the result has appeared more modest, slightly exceeding unstable 75 %-s' level, that, apparently, is caused by insufficient amount of the verified clinical cases on subtypes TIA in training sample. 



25.09.2023

01.05.2016

...

29.01.2016

...

  • (20)

  • .

    Играть в Супер сиалис Якутск Как пробить автомобиль по vin коду автомобиляиграть черепашки ниндзя онлайнШкола танца на пилоне DiamondМонтаж и обвязка котлов отопления в омскеЧерепашки-НиндзяСтоимость препарата дапоксетинкупить стол в омскедженерик виагра софт купитьиграть онлайн спанч бобгадалка онлайн тароиграть онлайн тутdocument.write('');