OSTIS–2011.– . 185–196.

004.056.57:032.26

.. (gva@bstu.by)

, .,

.. (bescase@gmail.com)

, .,

      , .   . , . , .

:   , , , , , .

, , , . . , , . . , . - , . . . . , , . , , .

. (, ),   (- , ), . , .

. . . (EEG), .

1.

(, ) .  , , . , , , , . , , .

- ()  , [ ., 2010]. , . - : 1. (1), 2. (2), 3. (3), 4. (). 41- , ( ) , , , .. [ ., 2010].  4- , 4 .

. : DoS, U2R, R2L Probe [KDD, 1999], [Golovko et al., 2006]. DoS – , , . U2R (). R2L . Probe .

  [Golovko et al., 2007], [Golovko et al., 2010]. TCP , , IP- IP- ( ) . 41- . 5- , 5 . ,    .

, .   1 ,   (RNN) (MLP), [, 2001]. .

41- 12- . , .   12. . , .

 

 

 
 
 

 

 

 

 


1 –

 

, ( 2).

 

 
 
 

 

 

 

 

 

 

 

 

 

 


2 – RNN

 

. . j- :

(1)

(2)

F – ; Sjj- ; wiji- j- ; xii- .

:

(3)

,

(4)

 

 

w’ji  j- i- ;  – i- .

RNN . :

(5)

(6)

 - j- , – .

.

(7)

 

-. ( neptune) . 3 , , .

 

 
  gr22
 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 


3 – RNN

 

101 . . : 1 – 22 , 2 – 22 , 3 – 22 4 () – 35 . 51 83. 1.

1 –

-

-

51

50

100%

76%

83

18

100%

77%

 

10% KDD (  500 000 !). 6186 . 10% . 2.

2 –

DoS

391458

391441

(99.99%)

370741

(94.71%)

U2R

52

48

(92.31%)

42

(80.77%)

R2L

1126

1113

(98.85%)

658

(58.44%)

Probe

4107

4094

(99.68%)

4081

(99.37%)

normal

97277

---

50831

(52.25%)

 

DoS Probe ( ). U2R R2L, 80,77% 58,44%.

, , RNN MLP, . , , , .

2.

. , , , , [, 2007]. , , , . , . , . . , , . . , . , .

[ ., 2010a], [ ., 2010b], [Bezobrazov et al., 2010], .   , .

4 . : , , , , , , , .

 

4 –

 

. , , , , , .

:

1)        .

2)        , «» .

3)        , .

4)        , .

5)        , .

5 . [, 2001] . « », - «1», «0».

 

 

5 –

 

j- :

(8)

, .

(9)

(10)

  L – , Yiki- k- .

(11)

(12)

:

(13)

, :

(14)

, ( 3).

3 –

Z1

Z2

1

0

0

1

0

0

 

, .

.

, , . , .

, .

3.

  EEG, , [, 1990].

, , [Maiwald et al., 2004]. , , . 6 . . , (, , ..). (ICA - Independent Component Analysis) [Hyvaerinen et al., 2000]. , .

 

6 – ; ; λ(t) -

, , (MLP). . ,   EEG.

(15)

:

(16)

, [ ., 2004], [Golovko et al., 2004], [, 2005], [Golovko et al., 2007]. τ   m. , k ³ m  1 , p . m – . :

x(t+iτ)=F(x(t+(i–1)τ), x(t+(i–2)τ),…, x(t+(i–k)τ)),  ,

(17)

τ – .

, . , n , .   7.

7 –

 

. , , EEG . .

. EEG ( 4). EEG 10 . 19 8.

4 – (EEG)

-

1

30

-

- J D

2

56

-

-

 

-   .

 

 

8 –

 

, ( ,   , ..).

ICA, . :

- FL = {F1, F3, F7,Fz};

- FR = {F2, F4, F8,Fz};

- TL = {T3, T5, C3, Cz};

- TR = {T4, T6, C4, Cz};

- PL = {P3, C3, Pz, Cz};

- PR = {P4, C4, Pz, Cz };

- OL = {O1, Pz, Cz};

- OR = {O2, Pz, Cz};

.

, 8 , . (1), 4, 9.

9 ( ) , , , . , 4 2, , .

4_9

9 – Lmax

 

EEG ( ) 99,6% .

, .   . , . , . . . « » .., .. .. .

[ ., 2010a] , .. / .. , .. // «»: . . ., , , 25-29 . 2010. – , 2010. – . 273-287.

[ ., 2010b] , .. / .. , .. // . – 2010. – 5. – . 17-31.

[, 2007] - // [ ]. – 2005. – : http://www.anti-virus.by/press/viruses/1485.html. – : 25.08.2007.

[, 2001] .. : , : . 4: . / . .. . – .: , 2001. – 256 .

[, 2005] .. //   « ». – M.: , 2005. – C. 43-88.

[ ., 2004] .., .. // : , 2004. – 1.

[, 1990] . . – .: , 1990. - 336.

[ ., 2010] , .. // .., .., .., .., .. // . – 2010. – .54 – 5.  – .  81–90.

[Bezobrazov et al., 2010] Bezobrazov, S. Artificial immune systems of the neural network  for the malicious code detection / S. Bezobrazov, V.Golovko  // ICNNAI’2010: proceedings of the 6th International Conference on Neural Networks and Artificial Intelligence, Brest, 1-4 June 2010. / Brest State Technical University. – Brest, 2010. – P. 147-153.

[Golovko et al., 2010] Golovko, V. S. Bezobrazov, P. Kachurka, L. Vaitsekhovich. Neural Network and Artificial Immune Systems for Malware and Network Intrusion Detection / V. Golovko, S. Bezobrazov, P. Kachurka, L. Vaitsekhovich // Studies in computational intelligence.  – Springer Berlin/Heidelberg, 2010. – Vol.  263: Advances in machine learning II.P. 485–513.

[Golovko et al., 2007] Golovko, V., Bezobrazova, S., Bezobrazov, S., Rubanau, U. Application of Neural Networks to the Electroencephalogram Analysis for Epilepsy Detection  // Proceedings of the International Joint Conference on Neural Networks (IJCNN 2007), Orlando, FL , USA-  Orlando, 2007. - P. 2707-2711.

[Golovko et al., 2004] Golovko, V., Doudkin, A., Maniakov, N. Application of Neural Networks Techniques to Chaotic Signal Processing //Optical Memory and Neural Networks. – 2004. -  Vol.13, N. 4. - P.195-215.

[Golovko et al., 2006] Golovko, V., Vaitsekhovich, L. Neural Networks approaches for Intrusion Detection and Recognition / V. Golovko, L. Vaitsekhovich // Computing. – 2006. - Vol. 5, N.3. -  P. 118-125.

[Golovko et al., 2007] Golovko, V., Vaitsekhovich, L., Kochurko, P., Rubanau, U. Dimensionality Reduction and Attack Recognition using Neural Network Approaches / V. Golovko, L. Vaitsekhovich, P. Kochurko, U, Rubanau // Proceedings of the International Joint Conference on Neural Networks (IJCNN 2007), Orlando, FL, USA – Orlando, 2007. - P. 2734-2739.

[Hyvaerinen et al., 2000] Hyvaerinen A., Oja E. Independent component analysis: algorithms and applications // Neural Networks, 13, 2000, - P. 411-430.

[KDD, 1999] 1999 KDD Cup Competition. - Information on: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[Maiwald et al., 2004] Maiwald Th., Winterhalder M., Aschenbrenner-Scheibe R., Voss H. U., Schulze-Bonhage A., Timmer J. Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic // Physica D, 194 (2004), - P. 357–368.



28.05.2023

01.05.2016

...

29.01.2016

...

  • (20)

  • .

    Онлайн игра "Assassin's Creed"В екатеринбурге где купить виагруКак проверить авто по vinИграть онлайн южный паркпродажа пилонов алматыУслуга муж на час в омскеDiablo 4Купить виагру софт в ростовеоснащение бара омскиграть онлайн копательиграть онлайн спанч бобпривороты любовь онлайн,винкс игра для девочекdocument.write('');