OSTIS–2011.– . 185–196.
004.056.57:032.26
.. (gva@bstu.by)
, .,
.. (bescase@gmail.com)
, .,
, . . , . , .
: , , , , , .
, , , . . , , . . , . - , . . . . , , . , , .
. (, ), (- , ), . , .
. . . (EEG), .
1.
(, ) . , , . , , , , . , , .
- () , [ ., 2010]. , . - : 1. (1), 2. (2), 3. (3), 4. (). 41- , ( ) , , , .. [ ., 2010]. 4- , 4 .
. : DoS, U2R, R2L Probe [KDD, 1999], [Golovko et al., 2006]. DoS – , , . U2R (). R2L . Probe .
[Golovko et al., 2007], [Golovko et al., 2010]. TCP , , IP- IP- ( ) . 41- . 5- , 5 . , .
, . 1 , (RNN) (MLP), [, 2001]. .
41- 12- . , . 12. . , .
![]() |
1 –
, ( 2).
![]() |
2 – RNN
. . j- :
|
(1) |
|
(2) |
F – ; Sj – j- ; wij – i- j- ; xi – i- .
:
|
(3) |
|
(4) |
w’ji – j- i- ; – i- .
RNN . :
|
(5) |
|
(6) |
- j- ,
– .
|
(7) |
-. ( neptune) . 3 , , .
![]() |
3 – RNN
101 . . : 1 – 22 , 2 – 22 , 3 – 22 4 () – 35 . 51 83. 1.
1 –
- |
- |
|
|
51 |
50 |
100% |
76% |
83 |
18 |
100% |
77% |
10% KDD ( 500 000 !). 6186 . 10% . 2.
2 –
|
|
|
|
DoS |
391458 |
391441 (99.99%) |
370741 (94.71%) |
U2R |
52 |
48 (92.31%) |
42 (80.77%) |
R2L |
1126 |
1113 (98.85%) |
658 (58.44%) |
Probe |
4107 |
4094 (99.68%) |
4081 (99.37%) |
|
|||
normal |
97277 |
--- |
50831 (52.25%) |
DoS Probe ( ). U2R R2L, 80,77% 58,44%.
, , RNN MLP, . , , , .
2.
. , , , , [, 2007]. , , , . , . , . . , , . . , . , .
[ ., 2010a], [ ., 2010b], [Bezobrazov et al., 2010], . , .
4 . : , , , , , , , .
4 –
. , , , , , .
:
1) .
2) , «» .
3) , .
4) , .
5) , .
5 . [, 2001] . « », - «1», «0».
5 –
j- :
|
(8) |
, .
|
(9) |
|
(10) |
L – , Yik – i- k- .
|
(11) |
|
(12) |
:
|
(13) |
, :
|
(14) |
, ( 3).
3 –
Z1 |
Z2 |
|
1 |
0 |
|
0 |
1 |
|
0 |
0 |
|
, .
.
, , . , .
, .
3.
EEG, , [, 1990].
, , [Maiwald et al., 2004]. , , . 6 . . , (, , ..). (ICA - Independent Component Analysis) [Hyvaerinen et al., 2000]. , .
6 – ; ; λ(t) -
, , (MLP). . , EEG.
|
(15) |
:
|
(16) |
, [ ., 2004], [Golovko et al., 2004], [, 2005], [Golovko et al., 2007]. τ m. , k ³ m – 1 , p . m – . :
x(t+iτ)=F(x(t+(i–1)τ), x(t+(i–2)τ),…, x(t+(i–k)τ)), |
(17) |
τ – .
, . , n , . 7.
7 –
. , , EEG . .
. EEG ( 4). EEG 10 . 19 8.
4 – (EEG)
-
|
|
|
|
|
1 |
30 |
|
- |
- J D |
2 |
56 |
|
- |
- |
- .
8 –
, ( , , ..).
ICA, . :
- FL = {F1, F3, F7,Fz};
- FR = {F2, F4, F8,Fz};
- TL = {T3, T5, C3, Cz};
- TR = {T4, T6, C4, Cz};
- PL = {P3, C3, Pz, Cz};
- PR = {P4, C4, Pz, Cz };
- OL = {O1, Pz, Cz};
- OR = {O2, Pz, Cz};
.
, 8 , . (1), 4, 9.
9 ( ) , , , . , 4 2, , .
9 – Lmax
EEG ( ) 99,6% .
, . . , . , . . . « » .., .. .. .
[ ., 2010a] , .. / .. , .. // «»: . . ., , , 25-29 . 2010. – , 2010. – . 273-287.
[ ., 2010b] , .. / .. , .. // . – 2010. – 5. – . 17-31.
[, 2007] - // [ ]. – 2005. – : http://www.anti-virus.by/press/viruses/1485.html. – : 25.08.2007.
[, 2001] .. : , : . 4: . / . .. . – .: , 2001. – 256 .
[, 2005] .. // « ». – M.: , 2005. – C. 43-88.
[ ., 2004] .., .. // : , 2004. – 1.
[, 1990] . . – .: , 1990. - 336.
[ ., 2010] , .. // .., .., .., .., .. // . – 2010. – .54 – 5. – . 81–90.
[Bezobrazov et al., 2010] Bezobrazov, S. Artificial immune systems of the neural network for the malicious code detection / S. Bezobrazov, V.Golovko // ICNNAI’2010: proceedings of the 6th International Conference on Neural Networks and Artificial Intelligence, Brest, 1-4 June 2010. / Brest State Technical University. – Brest, 2010. – P. 147-153.
[Golovko et al., 2010] Golovko, V. S. Bezobrazov, P. Kachurka, L. Vaitsekhovich. Neural Network and Artificial Immune Systems for Malware and Network Intrusion Detection / V. Golovko, S. Bezobrazov, P. Kachurka, L. Vaitsekhovich // Studies in computational intelligence. – Springer Berlin/Heidelberg, 2010. – Vol. 263: Advances in machine learning II. – P. 485–513.
[Golovko et al., 2007] Golovko, V., Bezobrazova, S., Bezobrazov, S., Rubanau, U. Application of Neural Networks to the Electroencephalogram Analysis for Epilepsy Detection // Proceedings of the International Joint Conference on Neural Networks (IJCNN 2007), Orlando, FL , USA- Orlando, 2007. - P. 2707-2711.
[Golovko et al., 2004] Golovko, V., Doudkin, A., Maniakov, N. Application of Neural Networks Techniques to Chaotic Signal Processing //Optical Memory and Neural Networks. – 2004. - Vol.13, N. 4. - P.195-215.
[Golovko et al., 2006] Golovko, V., Vaitsekhovich, L. Neural Networks approaches for Intrusion Detection and Recognition / V. Golovko, L. Vaitsekhovich // Computing. – 2006. - Vol. 5, N.3. - P. 118-125.
[Golovko et al., 2007] Golovko, V., Vaitsekhovich, L., Kochurko, P., Rubanau, U. Dimensionality Reduction and Attack Recognition using Neural Network Approaches / V. Golovko, L. Vaitsekhovich, P. Kochurko, U, Rubanau // Proceedings of the International Joint Conference on Neural Networks (IJCNN 2007), Orlando, FL, USA – Orlando, 2007. - P. 2734-2739.
[Hyvaerinen et al., 2000] Hyvaerinen A., Oja E. Independent component analysis: algorithms and applications // Neural Networks, 13, 2000, - P. 411-430.
[KDD, 1999] 1999 KDD Cup Competition. - Information on: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
[Maiwald et al., 2004] Maiwald Th., Winterhalder M., Aschenbrenner-Scheibe R., Voss H. U., Schulze-Bonhage A., Timmer J. Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic // Physica D, 194 (2004), - P. 357–368.
28.05.2023